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Abstract: Exosomes are membrane-enclosed entities of endocytic origin, which are generated during
the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the
extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial,
and different immune cells (B-cells and dendritic cells), and was reported to be correlated with
normal physiological processes. The compositions and abundances of exosomes depend on their
tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic
acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target
cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system
and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a
diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory
properties of exosomes enable them to trigger anti-tumor responses, and exosome release from
cancerous cells suggests they contribute to the recruitment and reconstitution of components
of tumor microenvironments. Furthermore, their modulation of physiological and pathological
processes suggests they contribute to the developmental program, infections, and human diseases.
Despite significant advances, our understanding of exosomes is far from complete, particularly
regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo
packaging, and exosome release in different cellular backgrounds. The present study presents diverse
biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials.
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1. Introduction

The existence of exosomes as extracellular vesicles (EVs) was first reported by Harding et al. and
Johnstone et al. [1,2]. Unlike microvesicles (MVs; 100–1000 nm) and apoptotic bodies (50–500 nm),
exosomes are membrane-enclosed vesicles of endocytic origin that range in size from 30 to 100 nm.
Their secretions to the extracellular milieu and body fluid compartments (bronchoalveolar lavage,
synovial fluid, bile, serum, milk, and urine) were reported for a variety of cells (mesenchymal cells,
fibroblasts, epithelial cells, platelets, antigen-presenting cells, and tumor cells) [3–6]. In addition to
simple budding at plasma membrane surface (ectosomes, micro-particles, microvesicles), exosomes
are produced in a well-organized two-step process that involves membrane invagination and vesicle
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budding. Exosomes are loaded with different molecules, such as nucleic acids, cytokines, bioactive
compounds, and enzymes, and surface-encoded proteins present as receptors on exosomes act on
neighboring cells either by inducing signaling pathways or affecting their cellular phenotypes by
transferring new genetic material and receptors [7–11]. Furthermore, their secretions to the extracellular
milieu influence host immune systems [3,12,13].

Exosome discovery is bearing fruit, as evidenced by an enormous increase in the number of
studies on exosome biology and the establishment of scientific societies like the American Society
for Exosomes and Microvesicles (ASEM) and the International Society for Extracellular Vesicles
(ISEV). This explosive growth of exosome biology even resulted in a journal Journal of Extracellular
Vesicles, and the establishment of the Exocarta and Vesiclepedia databases, which are dedicated to
extracellular vesicles. The extracellular RNA (exRNA) research portal is the result of an initiative by
the Extracellular RNA Communication Consortium (ERCC) that provides a catalog of extracellular
RNAs (exosomes are potential RNA carriers), and reports on the mechanisms of exRNA generation,
secretion, transport, therapeutic uses, and their uses as biomarkers of disease. In addition to their
importance as signaling molecules for intercellular communication and regulation, exosomes offer
potential means of ameliorating pathogenic immune responses, diagnosing different diseases, and
delivering therapeutics. Here, we summarize essential findings of exosome biology, and provide an
up-to-date account of their diverse physiological and pathological functions.

2. Isolation and Characterization

Exosomes made their entrance into the scientific world three decades ago. Late endosomes were
considered as pre-degradative compartments, and the vesicular structures secreted by late lysosomes
were considered as the membranous entities of dying cells. As technical problems in the isolation
methods hamper their separation from other vesicle types, no consensus was reached on their isolation
methods. The existence of exosomes became apparent when reticulocyte culture supernatant was
purified by ultracentrifugation, and they were only recognized as functional entities by electron
microscopy [14]. Ultracentrifugation at ≥100,000× g is routinely used to obtain exosomes from culture
supernatants. Although the technique excludes contamination by dead cell debris, it results in mixed
fractions of exosomes, protein aggregates, and vesicular structures. Other isolation methods include
serial filtration [15], immunoaffinity purification against surface proteins [16], and commercially
available kits, which allow rapid, straight forward isolation. Confirmation that isolated vesicles are
exosomes is achieved by laser scatter tracking, electron microscopy, and other techniques such as mass
spectrometry [17–20].

Observations of exosomes by whole-mount electron microscopy revealed them to be “saucer-like”
or “deflated-football” shaped, believed to be due to vesicle collapse during sample preparation [21].
Although Harding reported in 1983 that exosomes are generated as multivesicular entities (MVEs) [2],
their vesicular characteristics were established by Pan and Johnstone in a study of the transition of sheep
reticulocytes [22]. The enrichment of Rab GTPases (Rab4 and Rab5), which act as membrane traffic
regulators in exosomes, was first reported by Vidal and Stahl [23], and this was followed by a report
on major histocompatibility complex class II (MHC-II)-bearing exosomes from B lymphocytes [19] and
dendritic cells (DCs) that were capable of stimulating T-cell response [8,24,25]. The presence of Rab11
in exosome secretions and the triggering of exosome secretion by calcium transients were established
by Savina et al. [26,27], and Rab 27 and Rab35 were identified as regulatory GTPases by Hsu [28].
Baietti demonstrated the presence of apoptosis-linked gene 2-interacting protein X (Alix), vacuolar
protein sorting-associated protein 4 (VPS4), and components of the endosomal sorting complexes
required for transport (ESCRT) pathway in exosome secretions [29].

3. Exosome Biogenesis

The budding of interluminal vesicles from endosomal compartments and their joining together
results in the production of multivesicular bodies (MVBs) [30]. Though some MVBs are destined
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for lysosome degradation, some fuse with the plasma membrane to cause the release of exosomes
into body fluids (in vivo) or to the culture medium (in vitro) [5,31]. Exosome formation involves the
participation of specific proteins, especially ESCRTs, which are involved in the sorting of endosomal
proteins for loading into MVBs (Figure 1). Furthermore, interactions between ESCRT-I, -II, and -III
with mammalian hepatocyte receptor tyrosine kinase substrate (Hrs) and Vps27 sort ubiquitinated
cargos, and trigger their transport into the MVB compartment [30,32]. In vitro experiments revealed
that ESCRT-I and -II recruitment drives membrane budding and the recruitment of ESCRT-III via Alix,
which binds with the tumor susceptibility gene 101 (TSG101) component of ESCRT-I, while ESCRT-I
and -II complexes cause the completion of budding [33]. Dissociation of ESCRT from MVB membranes
occurs through the involvement of an ATPase, Vps4 [30,32]. Interestingly, similar patterns of exosome
formation were observed in dendritic cells (DCs) [6], antigen-presenting cells (APCs) [19], cytotoxic
T-lymphocytes (CTLs) [34], Epstein–Barr virus (EBV)-transformed B-cells [19], mastocytes [35], and
platelets [36].
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Figure 1. Exosome biogenesis. The process starts with an invagination of the endosomal membrane,
and involves Rab GTPase and endosomal sorting complexes required for transport (ESCRTs).
The delivery of cargo to recipient cells occurs via ligand–receptor interactions between the exosome
and the host cell.

4. Exosome Composition

Fluorescence-activated cell sorting (FACS), Western blotting, and mass spectrometry are
commonly employed to decipher the exact compositions and to identify the molecular constituents
of exosomes [17,19,37]. Depending largely on their cellular origins, exosomes contain specific
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sets of protein families of endocytic, cytosolic, and plasma membrane origin. Exosomes are
enriched with tetraspanins (cluster of differentiation 9 (CD9), CD26, CD53, CD63, CD81, and CD82),
endosome-associated proteins (TSG101, Alix), heat-shock proteins (Hsc70, Hsp90), clathrin, flotillin-1,
cytoskeletal elements (ezrin, tubulin, and annexins), Rab proteins, MHC molecules, intercellular
adhesion molecule 1 (ICAM-1), co-stimulatory T-cell molecules (CD86), other transmembrane
proteins (αM (DCs), α4β1 (reticulocytes)), immunoglobulin A33 (enterocytes), P-selectin (platelets),
and matrix metalloproteinases (MMPs) [8] (Figure 2). In addition, lipids, such as ceramides,
phosphatidylethanolamine, phosphatidylserine, diacylglyceride, cholesterol, sphingomyelin, and
lyso-bisphospatidic acid, were also reported to be present on exosome membranes [38]. Furthermore,
exosomes also carry nucleic acid (DNA, messenger RNAs (mRNAs), microRNAs, and other non-coding
RNAs) signatures. The levels of different components in exosomes depend largely on the functional
states of cells producing them, that is, whether they are stimulated, transformed, rested, or stressed [31].
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Figure 2. Structure of an exosome. Exosomes exhibit a complex lipid-bilayer surface structure
characterized by an array of surface-localized proteins and membranous lipids, which mediate specific
targeting and promote cellular uptake.
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5. Exosome Secretion

Exosome secretion into the extracellular milieu modulates gene expression, function, and even
cellular differentiation programs. The protein content and genetic material of exosomes can even
change the morphology of a recipient cell by interfering with its signaling components. Though little
is known of the mechanisms driving MVB to plasma membrane fusion, a study of reticulocytes
revealed that exosome secretion is dependent on vesicular-associated molecular pattern 7 (VAMP7)
function [39]. Despite the fact that MVB fusion to the plasma membrane requires vesicular soluble
N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (v-SNAREs) and target SNAREs
(t-SNAREs), the secretion of exosomes with Wingless (Wnt) as a signature depends on arginine
(R)-SNARE Ykt6 [40]. The SNARE complex helps with the energy needed for MVB fusion to
the plasma membrane, thereby assisting interaction between the two membranes. Independently
of its proton-pumping ability, the V0 subunit of v-ATPase, in association with SNAREs, assists
fusion by forming fusion pores [41]. Additionally, Rab proteins (Rab11, Rab27b) form a key
component of exosome secretion by facilitating the docking of MVBs to the plasma membrane [42].
Exosome secretion is regulated in part by P2X receptor activation on neutrophils and monocytes
and by the lipopolysaccharide (LPS)-induced activations of ATP and Toll-like receptor 4 (TLR4) on
dendritic cells [6,42,43].

6. Exosome Function

Over the past decade, exosomes were implicated in diverse activities in biological
systems, possibly by modulating intercellular communication or action at a distance [21,44].
Their immunomodulatory (immunosuppressive or immune-active) effect is one of the different
mechanisms caused by regulation of the deliveries of different constituents to recipient cells [7,45].
These effects attracted the interest of clinical immunologists [21,46]. Because they produce
immunosuppressive molecules, exosomes play dual roles in cancer, that is, they can aid the growth
and dissemination of cancer cells by overcoming the activities of T-lymphocytes and natural killer
cells (NKCs) and/or modulate the immune system by promoting the differentiation of T-regulatory
cells or myeloid cells that elicit anti-tumor responses [47–49]. In particular, exosomes of dendritic
cell origin possess MHC-I and -II on their surface, whose binding to T-cell receptors induce an
adaptive immune response by activating CD4+ or CD8+ T cells [50,51]. However, exosomes from
immature DCs reduce adaptive immune responses by inducing apoptosis of the T-cells, thus promoting
immunogenic tolerance, as observed in murine models of autoimmune diseases and transplantation [7].
By influencing the balance between pro- and anti-inflammatory effector T-cells, these suppressive
exosomes were found to induce the differentiation of T-helper 17 (Th17)/Th1 cells to forkhead box P3
(Foxp3) and Th2 regulatory T cells [52]. Furthermore, Corrado et al. reported on the immune adjuvant
potential of exosomes [7]. By acting as antigen-presenting vesicles, exosomes can possibly be exploited
to evade graft rejection and treat autoimmune diseases.

Exosomes released by epithelial cells (intestinal epithelial lining) were found to be involved in
antigen presentation during inflammatory conditions. It may be that these extracellular vesicles are
responsible for providing fixed cells with the ability to act at a distance [53]. In the nervous system,
exosomes secreted by cells (neurons, microglia) are utilized in cell communication, and participate
in neurite outgrowth formation, neuronal survival, and myelin formation [54]. Moreover, the
release of pathogenic proteins (prions, β-amyloid peptides) by exosomes exacerbates central nervous
system disorders [55–57]. In the liver, exosomes participate in a plethora of processes. Epithelial
(hepatocytes, cholangiocytes) exosome production was also reported from stellate and adult liver stem
cells [58–61]. Despite their effects on extracellular signal-regulated kinase (ERK) signaling and on the
expression of microRNA 15a (miR-15a), biliary exosomes were found to inhibit the proliferation of
cholangiocytes [60,62,63]. Exosomes from mouse hepatocytes contain drug-metabolizing enzymes,
such as cytochrome P450 (CYP450) and glutathione S-transferase, which are responsible for the
detoxification of toxins and drugs in target cells [58,64,65].
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Exosomes containing oncogenic materials (oncogenic DNA, their transcripts, and activated
oncoproteins) are referred to as oncosomes, and they mediate the intercellular transport of these
mutant molecules in a systemic manner [66–69]. Fibroblast-derived exosomes promote breast cancer
cell dynamics via a Wnt signaling pathway [70]. Analysis of the oncosome cargoes circulating in body
fluids appear to offer continuous monitoring of the changing molecular make-ups of different cancers.
As such, oncosomes offer promising diagnostic tools for specific cancer subtypes and for determining
their prevalence and statuses.

7. Prospective Applications

Given their wide-ranging functions, exosomes have huge diagnostic and therapeutic potential.
By regulating physiological functions, such as angiogenesis, intercellular communication, coagulation,
immune response, and cell survival, exosomes are of immense interest to the scientific fraternity
worldwide. Their secretions from cells into body fluids (plasma, urine, cerebrospinal fluid (CSF),
saliva, and others) are widely reported (Table 1). Exosomes are mini-copies of cells from which they
originate [71] in terms of their antigenicity (cancer and immune cells) and their therapeutic potential
(stem and antigen primed-cells); thus, exosomes are viewed as being of immense importance for
diagnostic and therapeutic applications.
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Table 1. List of the top exosome proteins. The classification is based on numbers of reported occasions, and includes protein names, symbols, report times, cell origins
and species, and methods used for identification. (Reported species: R = rat, M = mouse, H = human, B = bovine, D = Drosophila).

No. Proteins (Species Found) Symbol Tissue/Cell/Body Fluids Identification Methods References

1.
Programmed cell death 6
interacting protein (R, M,

H)
PDCD6IP

Pancreatic, colorectal, breast, ovarian,
liver, and brain cancer cells, hepatocytes,
neural stem cells, embryonic fibroblast,
dendritic cells, platelets, macrophages,

reticulocytes, urine, serum, saliva

Mass spectrometry,
Western blotting [72–80]

2. Heat-shock protein 8 (R,
M, H, B) HSPA8

Prostate, colorectal, and brain cancer
cells, macrophages, mast cells,

adipocytes, reticulocytes, platelets, urine,
milk, serum, saliva

Mass spectrometry,
Western blotting, RNA

sequencing
[70,77,81–88]

3. Annexin A2 (R, M, H, B) ANXA2

Ovarian, colorectal, and breast cancer
cells, microglia, dendritic cells,

macrophages, fibroblasts, hepatocytes,
adipocytes, reticulocytes, platelets,

thymus, urine, milk, saliva

Mass spectrometry,
Western blotting, RNA

sequencing
[70,77,80,81,83,84,86,87,89–92]

4. Syndecan-binding protein
(R, M, H, B) SDCBP

Pancreatic, ovarian, colorectal, prostate,
and brain cancer cells, dendritic cells,

macrophages, mast cells, reticulocytes,
hepatocytes, platelets, fibroblasts, urine,

milk, saliva

Mass spectrometry,
Western blotting [24,77,82–85,87,93]

5.
Heat-shock protein 90

alpha class A member 1
(R, M, H, B)

HSP90AA1

Ovarian, colorectal, prostate, and
bladder cancer cells, neural stem cells,
macrophages, mast cells, adipocytes,
reticulocytes, hepatocytes, pancreatic
cells, platelets, fibroblasts, urine, milk,

serum, saliva

Mass spectrometry,
Western blotting,

microarray
[70,77,80,81,83,84,86,94–98]

6. Tumor susceptibility gene
101 (R, M, H, B, D) TSG101

Colorectal, liver, prostate, and bladder
cancer cells, neural stem cells, dendritic

cells, macrophages, reticulocytes,
hepatocytes, platelets, urine, milk,

Drosophila s2 cells.

Mass spectrometry,
Western blotting [24,58,76,77,80,83,87,97,99–102]

7.
Eukaryotic translation

elongation factor 1 alpha 1
(R, M, H, B)

EEF1A1

Ovarian, colorectal, prostate, and bladder
cancer cells, mast cells, adipocytes,

hepatocytes, reticulocytes, dendritic cells,
platelets, macrophages, pancreatic cells,
fibroblasts, thymus, urine, saliva, milk

Mass spectrometry, RNA
sequencing, microarray

[24,58,70,77,80,81,83,84,86,87,
93,94,103]
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Table 1. Cont.

No. Proteins (Species Found) Symbol Tissue/Cell/Body Fluids Identification Methods References

8.

Tyrosine-3-monooxygenase/
tryptophan-5-monooxygenase
activation protein, zeta (R,

M, H, B)

YWHAZ

Ovarian, colorectal, prostate, and
bladder cancer cells, mast cells,

hepatocytes, reticulocytes, dendritic cells,
platelets, pancreatic cells, fibroblasts,

thymus, urine, saliva, milk

Mass spectrometry,
microarray [24,70,77,83,84,94,95,104–106]

9.
Eukaryotic translation

elongation factor 2 (R, M,
H, B)

EEF2

Ovarian, pancreatic, bladder, colorectal,
prostate, and breast cancer cells,

adipocytes, hepatocytes, reticulocytes,
platelets, thymus, saliva, urine, milk

Mass spectrometry, RNA
sequencing, microarray

[58,70,77,80,81,83,85–87,93–95,
98,103,106–111]

10.
Heat-shock protein 90

alpha class B member 1 (R,
M, H, B)

HSP90AB1

Ovarian, pancreatic, bladder, colorectal,
and prostate cancer cells, dendritic cells,

macrophages, mast cells, neural stem,
cells, pancreatic cells, adipocytes,

hepatocytes, reticulocytes, platelets,
thymus, urine, milk, serum

Mass spectrometry,
Western blotting,

[24,58,77,79–81,83,85,86,88,94–
96,98,103,106,109,111]

11. Annexin 5 (R, M, H) ANXA5

Ovarian, bladder, colorectal, and prostate
cancer cells, adipocytes, hepatocytes,
reticulocytes, platelets, thymus, urine,

serum, dendritic cells, fibroblast,
macrophages, mast cells, pancreatic cells,

urine

Mass spectrometry,
Western blotting,

fluorescence-activated cell
sorying

[24,58,70,73,77,80,81,85,87,88,
94,95,103,109–113]

12. Fatty-acid synthase (R, M,
H, B) FASN

Adipocytes, hepatocytes, reticulocytes,
fibroblast, pancreatic cells, milk, breast
milk, bladder, colorectal, ovarian, and
prostrate cancer cells, platelets, serum,

thymus, urine

Mass spectroscopy,
Western blotting, RNA

sequencing

[58,70,73,77,81,83,85,87,93,95,
103,106,109,111,114,115]

13.

Tyrosine-3-monooxygenase/
tryptophan-5-monooxygenase
activation protein, epsilon

(R, M, H, B)

YWHAE

Adipocytes, hepatocytes, reticulocytes,
urine, milk, mast cells, pancreatic cells,

bladder, colorectal, ovarian, and
prostrate cancer cells, platelets, saliva,

thymus, urine

Mass spectroscopy [58,73,77,81,83,85,88,94,95,103,
106,109–111,113]

14. Clathrin heavy chain (Hc)
(R, M, H) CLTC

Adipocytes, hepatocytes, reticulocytes,
fibroblast, macrophages, bladder,

colorectal, ovarian and prostate cancer
cells, plasma, platelets, saliva, thymus,

urine

Mass Spectroscopy, RNA
Sequencing

[58,70,73,77,80,81,85,87,103,106,
109–111,116,117]
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7.1. Exosomes in Diagnostics

With specific protein signatures (Alix, TSG101, CD9, CD63, HSP70, and HSP90), RNA (mRNA
and miRNA), and characteristic lipid contents, exosomes in body fluids (blood, serum, milk,
urine) were investigated as diagnostic markers for the early detection of various diseases [118,119].
Exosomal RNAs from saliva, amniotic fluid, and urine were examined in the context of their use
as a diagnostic marker for CD24 polymorphism (C→T; alanine to valine change) associated with
a modulation in the progression of multiple sclerosis (MS), chronic hepatitis B, systemic lupus
erythematosus (SLE), and giant-cell arthritis [120].

Increases in the miRNA content released as part of exosomes into body fluids provide insight into
the progression of the disease [118,121]. Cancer patients exhibit characteristic patterns of RNA and
miRNA packaged in circulating MVs, and a major proportion of these are exosomes [122]. Diseases
like diabetes, lung cancer, and colorectal cancer have definite miRNA expression patterns [123–126].
MicroRNA 92a is downregulated in plasma in hepatocellular carcinoma and leukemia [127,128].
Furthermore, serum miRNAs (miR25, miR223) were reported to provide specific miRNA signatures in
non-small-cell lung cancer and liposarcoma [129,130]. Serum miR-141 levels were used to differentiate
prostate cancer patients and normal controls [131,132].

Human saliva, which is another indispensable source of exosomes, contains nucleic acids and
proteins, and provides diagnostic signatures for different diseases [133]. Levels of miRNAs in saliva
samples obtained from parotid and submandibular/sublingual regions from healthy controls and
patients suffering from Sjogren’s syndrome showed that miRNAs highly expressed in parotid glands
were differentially expressed. Michael et al. (2010) reported a marked difference between the six highly
expressed miRNAs in Sjogren’s syndrome and healthy controls (Sjogren’s syndrome: hsa-miR-23a,
hsa-miR-27b, hsa-miR-29b, hsa-miR-29c, hsa-miR-150, hsa-miR-335; and healthy controls: hsa-let-7c,
hsa-miR-17, hsa-miR-128, hsa-miR-150, hsa-miR-212, hsa-miR-1908) [134].

Urine also serves as an efficient source of exosomal markers of urogenital diseases. Proteomic
analysis of urine helped identify eight proteins useful for the detection of bladder cancer [135].
Exosomes from urine possess mRNA-encoding protein prostate cancer-associated 3 (PCA3) and
the transmembrane protease serine 2 (TMPRSS2)–erythroblast transformation-specific (ETS)-related
gene (ERG) fusion product, an entity over-expressed in prostate cancer [136]. The detection of
proteins, mRNAs, and miRNAs in patient serum, saliva, and/or urine offers a unique means
of diagnosing and detecting early disease. Exosomes provide more cost-effective, accurate, and
non-invasive diagnostic tools than traditional invasive methods, and potentially better outcomes [137].
By acting as antigen-presenting vesicles, exosomes derived from malignant effusions, neoplastic
cells, or tumor-pulsed dendritic cells are currently being explored for use as non-invasive biomarkers
in the diagnosis of cancer, in addition to their use as a prognostic marker in cardiovascular and
neurodegenerative disorders (Alzheimer’s and Parkinson’s) and for the management of infectious
diseases (diphtheria, tuberculosis), autoimmune diseases (lupus erythromatosus and rheumatoid
arthritis). Accordingly, pharmaceutical companies, such as Exosomics and Exosome Diagnostics, are
focusing on the commercialization of exosome-based diagnostics.

7.2. Exosomes in Therapeutics

The properties of exosomes, which include bioavailability, distribution, and stability under in vivo
and in vitro conditions, and their abilities to cross the blood–brain barrier (BBB) and regulate gene
expression via the transfer of miRNA and small interfering RNA (siRNA) to target cells means they are
preferred over other EVs as potential therapeutics [137]. Furthermore, because exosomes encapsulate
and, thus, protect contents from degradation, their use in disease immunotherapy is viewed with
considerable optimism. The successful completion of two independent phase I trials of dexosomes
(autologous DC-derived exosomes) for treating non-small-cell lung (NSCL) cancer confirmed their
potential therapeutic applications [15,24,138,139]. Because they topically present MHC-I, MHC-II,
and CD1, dexosomes induce innate and adaptive immune responses. More specifically, they activate
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cytotoxic T-cells, induce tumor rejection in mice, and promote NKC activation and NKC-dependent
anti-tumor effects in immunocompetent mice [140]. Furthermore, dexosome immunotherapy is
considered safe [141].

Mesenchymal stem cells (MSCs) are stromal cells with well-known therapeutic potentials.
These cells are present in bone marrow, umbilical cord, and adipose tissue [142]. The exosomes derived
from MSCs added a new paradigm of therapeutic applications in regenerative medicine. MSC-Ex
therapies are preferred over MSC transplantation because they induce fewer immune responses,
increase safety, and reduce storage, shipment, and administration concerns. Thus, “off-the-shelf”
products with negligible immunogenicity are readily developed using exosomes. By using MSC
exosomes rather than MSCs, limitations regarding replicating cell transplantation and safety concerns
are much alleviated. The administration of MSC-derived MVs intravenously was found to accelerate
recovery after glycerol-induced acute renal injury in SCID mice [143], which argues well for the use
of MSC-Ex as an adjuvant therapy for acute renal injury. Yan et al. (2017) reported the use of human
umbilical cord MSC-derived exosomes (hucMSC-Ex) for the treatment of liver disease, and assessed
their efficacy and their action mechanism [144]. On measuring antioxidant activities and assessing the
hepato-protective effect of hucMSC-Ex in vitro and in vivo, these workers found that hucMSC-Ex (at
a systemic dose of 16 mg/kg) reduced reactive oxygen species (ROS) and malondialdehyde (MDA)
levels and, thus, increased the viabilities of L02 cells exposed to CCl4 or H2O2 and effectively rescued
recipient mice from CCl4-induced liver failure. The mechanism of rescue by hucMSC-Ex-derived cells
was attributed to glutathione peroxidase 1 (GPX1), which detoxifies CCl4 and H2O2, thereby reducing
oxidative stress and apoptosis. It was also shown that a knockdown of GPX1 in hucMSCs abolished
the antioxidant and anti-apoptotic abilities of hucMSC-Ex, and reduced the hepato-protective effects
of hucMSC-Ex in vitro and in vivo.

By aiding the adhesion of hematopoietic stem-cell progenitor cells to endothelia, microvesicles
derived from platelets (PMVs) supported the engraftment of transplanted stem cells in lethally
irradiated mice [145]. Beltrami et al. (2017) observed enrichment of miRNAs of potential cardiovascular
origin in the exosomes of pericardial fluid [146]. Pericardial fluid (PF) is an ultrafiltrate of plasma found
in the pericardium. On the mechanistic level, they demonstrated the proangiogenic role of miRNA
let-7b-5p along with its inhibitory effect on TGFBR1 in ECs, following delivery of functional let-7b-5p
via PF exosomes. Downregulation of let-7b-5p miRNA in PF exosomes impaired the angiogenic
response by ECs. At a functional level, the authors reported that PF exosomes enhanced survival,
proliferation, and networking of cultured endothelial cells (ECs), and restored the pro-angiogenic
function of ECs depleted of their endogenous miRNA content.

Cardiosphere-derived cells (CDCs) induce the therapeutic regeneration of the infarcted human
heart by stimulating angiogenesis and causing functional improvements of infarcted myocardium.
Interestingly, CDCs reduced scar sizes and the growth of new functional myocardium, which was
previously considered an irreparable form of injury [147]. Ibrahim et al. (2014) showed CDC exosomes
enhanced angiogenesis and promoted cardiomyocyte survival and proliferation [148]. The authors
demonstrated the effects of CDC exosomes on angiogenesis, cardiomyocyte proliferation, and apoptosis
using human umbilical cord endothelial cells (HUVECs), and found CDC exosomes stimulated
angiogenesis, improved cardiac function, and increased viable mass after myocardial infarction
(MI) in an established preclinical model versus normal human dermal fibroblast (NHDF) exosomes.
A comparative study of CDC- and NHDF-derived exosomes showed CDC exosomes promoted tube
formation by HUVECs, which is indicative of enhanced angiogenesis. The authors compared the
miRNA repertoires of CDC and NHDF exosomes using a PCR array and showed that CDC exosomes
are rich in miR-146a, which is a main mediator of the beneficial effects of these exosomes against MI.
In addition, they showed inhibition of exosome secretion using GW4869 (a reversible inhibitor of
neutral sphingomyelinase), which prevents exosome release and attenuates CDC benefits by inhibiting
exosome secretion.
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Exosomes are known to have neuroprotective effects, that is, they aid neuron healing and
the regeneration of peripheral nerves, and also act as mediators of neurodegenerative diseases.
Furthermore, their ability to cross the blood–brain barrier makes them indispensable neurotherapeutic
carriers of drugs and therapeutics. In the nervous system, exosome-mediated neuronal communication
facilitates cell-to-cell interactions. The transfer of miRNAs and protein entities from glial cells to neural
exons was reported a few years ago [149]. Sulfatides, galactocerebrosides, and cholesterol are myelin
lipids primarily found in myelin sheaths and they are required for nerve conduction; they showed
their release into the exosomes via oligodendrocytes [150]. The involvement of MVBs in Alzheimer’s
patients was first suspected when it was observed that more MVBs were present in forebrain cortical
neurons, and in Huntington’s disease, mutated huntingtin protein was found to accumulate in MVBs.

8. Conclusions

Exosomes are importantly involved in intercellular communication and in the pathogeneses of
various human diseases. Because exosomes are readily accessible in body fluids, their genetic profiles
provide new diagnostic and prognostic tools and open new therapeutic possibilities. Their abilities
to carry mRNAs, miRNAs, and non-coding RNAs provide an efficient means of controlling protein
expressions at a distance in different target cells. The use of exosomes as delivery vehicles offers
significant advantages over existing delivery systems due to their small size, non-toxic natures, and
target specificities [151]. Interest in exosomes by scientists and physicians increased markedly, but we
are still in an early stage of deciphering the molecular mechanisms involved in exosome biogenesis
and cargo recruitment.

As our understanding of the biology of exosomes increases, so will our knowledge of design
principles and exosomal conjugates. DC-derived exosomes engineered to express rabies virus
glycoprotein showed positive results in the delivery of siRNA across the BBB in murine models [152].
To facilitate the release of therapeutic cargoes under specific conditions, bioengineered liposomes
and polymer nano-carriers based on exosome templates are needed to achieve better targeting and
increase drug uptakes [153,154]. The use of lipid–protein compositions that increase exosome fusion
to recipient cells and the engineering of liposomes for exosomic proteins like tetraspanins hold great
promise for the targeted delivering of drugs to tumor tissues [155–157]. Although exosomes provide
a new platform for therapy and biomarker development, many challenges remain to be overcome,
but continued progress in this field is sure to reveal the secrets responsible for their physiological and
pathological roles.
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