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Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space
when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell
communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects
on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by
the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating,
and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that
exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem
cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the

therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.

1. Introduction

Regenerative medicine aims to improve the regeneration of
damaged, malfunctioning, and missing tissue and organs [1].
Mounting evidence supports that stem cell therapies may be
promising in this field on the basis of potential therapeutic
use of stem cells in damaged organs such as the myocardium
after heart infarction, stroke, spinal cord injury, retina dis-
eases, and damaged liver [2-4]. In addition, stem cells-based
therapy may be a prospective way for diseases that are irre-
versible and incurable at present [5]. Specifically, regenerative
medicine contains two goals: one is efficiently and safely
transferring stem cells into injured organs and tissues, which
may replace the transplantation of the entire organ in the near
future; the other is to develop strategies in order to improve
the regenerative potential and function of adult stem cells
residing in various organs [6]. In the last decades, numerous

preclinical studies confirmed the therapeutic potentials of
stem cells. Stem cells involving embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), and adult stem cells
manifest respective merits and drawbacks. Some types of
stem cells are being evaluated in clinical trials with promising
results [7]. These stem cells such as mesenchymal stem cells
(MSCs) are relatively safe, but therapeutic strategies avoiding
direct use of living stem cells are more likely to provide a
safer way to prevent disease progression. Although direct and
indirect mechanisms such as growth factors and cytokines
have accounted for the therapeutic effects, paracrine secre-
tion seems to play a predominant role. A key component of
paracrine secretion is extracellular vesicles (EVs), particularly
the exosome fraction that mainly contributes to the action of
stem cells in which genetic information can be horizontally
transferred between stem cells and tissue-injured cells. On
the basis of the ability of microvesicles (MVs) to mimic stem
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FIGURE I: Biogenesis and action of exosomes. Exosomes are formed by inward budding of membrane of the multivesicular bodies (MVBs);
when MVBs fused with the membranes, the exosomes are released. Exosomes can deliver lipids, proteins, and nucleic acid to recipient cells
when circulating in the extracellular space. Exosomes are important mediators of intercellular communication and play significant roles in
immune response, tumor progression, and neurodegenerative disease among others.

cell properties, it is speculated that stem cell-derived MVs
especially exosomes represent a relevant therapeutic option
in regenerative medicine. In this review, we summarize the
roles that MV's especially exosomes play in each type of stem
cells.

2. Characteristics of Exosomes and Function

Exosomes are one of the several groups of EVs which include
ectosomes secreted directly from the plasma membranes
and apoptotic bodies released from dying cells. Exosomes
originate from the inward budding of the cell membranes
followed by formation of multivesicular bodies (MVBs).
When MVBs fuse with the plasma membranes, exosomes are
released (Figure 1). Since they were discovered to be released
from sheep reticulocytes, exosomes were once defined as
unwanted proteins secreted from the cells and manifested as a
membrane vesicle [8]. Currently, exosomes have been verified
to be secreted from various cells including B cells [9], T cells
[10], dendritic cells [11], platelets [12], the Schwann cells [13],
tumor cells [14], cardiomyocytes [15], endothelial cells [16],
and stem cells [17] among others. Moreover, exosomes are
found in physiological fluids such as urine [18], plasma [19],
and cerebral fluid [20] and even in organs such as thymus

[21]. Exosomes are characterized by their diameters ranging
from 30 to 120nm and with a density in sucrose of 1.13-
1.19 g/mL. Their membranes contain abundant cholesterol,
sphingomyelin, ceramide, and lipid rafts. Besides, exosomes
are enriched with various nucleic acids including mRNAs,
microRNAs (miRNAs), and other noncoding RNAs [22].
These RNAs can be taken up by neighboring cells or remote
cells, subsequently modulating recipient cells; on the other
hand, RNAs are protected from degradation after being
packed into the exosomes or microvesicles, which altogether
results in increased attention to exosomes and the carried
RNAs. On this basis, an increasing number of mRNAs
and miRNAs have been discovered in different cell-derived
exosomes. Most exosomes have conserved a set of proteins
such as heat shock proteins, HSP70 [23] and HSP90 [24],
certain members of the tetraspanin superfamily of proteins,
especially CD9, CD63, CD81, and CD82 [25], multivesicle
related proteins such as Alix and TSG-101, and membrane
transportation and merging proteins such as Rab GTPase
and flotillin. In addition, exosomes contain unique tissue
proteins that may reflect their cellular source. Mathivanan
and Simpson [26] set up the ExoCarta, a freely accessible
database listing proteins and RNAs that have been found
in exosomes. The representative characteristics of exosomes
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FIGURE 2: Characteristics of exosomes isolated from the MSCs [27]. (a) Representing exosomes identified by the transmission electron
microscopy (TEM); the size ranges from 40 to 120 nm, scale bar 500 nm. (b) Showing the distribution of diameters of exosomes measured by

the Nanosight (NTA). The most common diameter was around 115 nm.

isolated from MSCs by transmission electron microscopy
(TEM) and nanoparticle tracking analysis (NTA) are shown
in Figure 2 [27]. When referring to the function of exosomes
(Table 1), though not clarified yet, most of the time we
correlate it with intercellular communication vehicle for
modulating cellular processes [9, 11, 25, 28, 29]. For instance,
exosomes participate in noninfectious diseases such as cancer
[30] and degenerative diseases like Parkinson’s disease and
Alzheimer’s disease [31, 32] as well as the process of immune
response [33] (Figure 1).

3. Exosomes and Their Roles in Stem Cells

Stem cells are kind of cells with self-renewal and multiplex
differentiation potential and can be differentiated into various
kinds of adult cells, like the ESCs, iPSCs, and somatic
stem cells [34, 35]. Previously, cell therapy attracts much
attention but encountered many realistic problems such
as the possibility of immune rejection and ethical issues
though pluripotent ESCs have long been deemed as an
ideal choice for regenerative medicine. As a result of the
ability of circumventing the problems associated with ESCs,
iPSCs have gained increasing attention. However, despite
their promising potential, there are still many hurdles that
should be overcome before iPSCs-based therapies are put
into clinical practice [36]. Specifically, therapeutic application
of iPSCs may involve the risk of teratoma formation and
may cause genetic modification, which could possibly give
rise to various obstacles [37, 38]. Accordingly, a better stem
cell type is needed urgently. MSCs, a type of adult stem
cells appearing safe, have been widely used in a variety
of clinical experiments [39]. One of the problems is the
limited number of transplanted MSCs in animal models
such as models of kidney injury [40], lung injury [41], and
acute myocardial infarction [42] after administration and rare
differentiation into appropriate cell types [43-45]; besides,
the therapeutic effect of MSCs may not correlate with the

engraftment, differentiation, and cell fusion when stem cells
are added to the target cells [46, 47]. These phenomena may
indicate that the MSCs exert their therapeutic effects through
the effects of secreted factors. Exosomes, an important part
of active components of the factors, are paid increasing
attention and studies have shown that the exosomes derived
from stem cells imitate the phenotype of parent stem cells,
holding a therapeutic potential for various diseases [48-
51]. Stem cells like the iPSCs, ESCs, hemopoietic stem cells
(HSCs), mesenchymal stem cells (MSCs), and neural stem
cells (NSCs) were all capable of secreting exosomes [52,
53]. In addition, the exchange between the exosomes and
target cells are bidirectional; on the one hand, damaged
cells secrete exosomes containing cell-specific miRNAs and,
after internalization within the stem cells, stem cells begin
to differentiate and acquire tissue specific cell types; on the
other hand, MVs released from stem cells may confer a stem-
cell-like phenotype to injured cells, consequently activating
self-regenerative programs [54]. In the following part, the
exosomes and the potential use in different types of stem cells
including the ESCs and adult stem cells are discussed.

4. ESCs

ESCs are pluripotent, self-renewing cells derived from the
inner cell mass of developing blastocyst [55]. ESCs have been
shown to represent an abundant source of MVs containing
critical components supporting self-renewal and expansion
of stem cells [56, 57]. In addition, they contain cellular
signaling molecules such as different kinds of mRNAs,
microRNAs, and proteins. Ratajczak et al. [57] proved that
exosomes secreted from the ESCs enhanced survival and
improved expansion of murine hematopoietic progenitor
cells (HSPCs) and enhanced expression of early pluripotent
genes by transferring mRNAs and proteins. Yuan et al.
[58] characterized the RNAs and protein contents of MVs
and indicated that exosomes could be engineered to carry
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TaBLE 1: The function of exosomes derived from different types of stem cells.
Type Phy31910g1cal Therapeutic function Pathqloglcal References
function function
Enhancing survival and expansion of HPSCs [56-58]
Self-renewal Inducing gene expression changes in Muller cells of the
ESCs . . [59]
and expansion retina
Wound recovery [60]
Repairing injured issues like heart, lung, and kidney [17, 62-68]
Cutaneous wound healing, TBI, and stroke [69-71]
Promoting Exerting immunomodulatory role on lymphocyte .
MSCs MSCs subsets ggvr?t;tmg tumor [72, 73]
proliferation Allogenetic cell-based therapy (74]
Delivering drugs [75,76]
Antitumor [77-79]
Promoting NPCs differentiation [80]
Neuropathological
Reoulatin ) ) ) development of [81-84]
NSCs g 8 Antibody targeting exosomes that may reduce viral NSCs
NSCs infection . .
proliferation Triggering 85]
autoimmunity
Protecting human islets (86, 87]
Promoting Steering angiogenesis in acute kidney injury [87]
EPCs endqthelzlial Promoting angiogenesis in hindlimb ischemia [88]
surviva Protecting H/R induced endothelial cell injury [89]
Protecting cardiomyocytes [90]
Increasing survival of endothelial cells [91-93]
Maintaining MVs of CD133+ cells derived from hematopoietic [92]
HSCs  stem cell tissues promote angiogenesis
property Vaccines for LEX that may enhance survival of patients [94]
with leukemia
CPCs Self-renewaland  Cardioprotection [95-97]
differentiation promoting migration of endothelial cells [15]

Note: ESCs: embryonic stem cells; HPSCs: hematopoietic progenitor cells; MSCs: mesenchymal stem cells; TBI: traumatic brain injury; NPCs: neural progenitor
cells; NSCs: neural stem cells; EPCs: endothelial progenitor cells; H/R: hypoxia/reoxygenation; HSCs: hematopoietic stem cells; MVs: microvesicles; LEX:

leukemia cell-derived exosomes; CPCs: cardiac progenitor cells.

exogenously expressed mRNAs and proteins such as green
fluorescent protein (GFP). Moreover, exosomes could alter
the expression of genes by transferring microRNAs and GFP
contained in MVs when docking and fusing with other
ESCs. Consequently, ESCs-derived MV especially exosomes
might be useful therapeutic tools for transferring mRNAs,
microRNAs, proteins, and siRNAs to cells and important
mediators of signaling within stem cell niches. Additionally,
MVs released from the ESCs could induce differentiation and
pluripotency in their target Muller cells [59], thus initiating
an early retinogenic process of differentiation. Jeong et al.
[60] showed that MV engineered from ESCs could enhance
cell proliferation and potentially contribute to recovery or
wound healing process of tissues. Simultaneously, we should
be prudent toward the clinical use of MVs derived from
the ESCs, which was best exemplified by Kubikova et al’s
study [61] in which they had a proteomic profiling of MV's
derived from human ESCs. This study confirmed the role of

MVs in communicating between human ESCs. More impor-
tantly, they highlighted a potential risk toward the clinical
application of human ESCs on the basis of their finding that
immunogenic membrane domains and infectious particles
were carried by the MV as well.

5. Adult Stem Cells

5.1. MSCs. MSCs are ubiquitously expressed in not only
many tissues of mesodermal origin such as bone marrow,
adipose, muscle, or bone but also many tissues isolated
from brain, liver, spleen, kidney, lung, thymus, and pancreas
[98]. MSCs harbor the potential to differentiate into stromal
support cells and secrete factors to support the stroma or
other cells [99, 100]. The easy procedures for their expansion
in vitro and their presence in numerous tissues make MSCs
the most studied adult stem cells in regenerative medicine.
The therapeutic potential and safety of MSCs have been
extensively studied and numerous clinical trials are published
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with additional ones under trail. Moreover, the therapeutic
potential of MSCs may be attributable to the paracrine factors
contained in MVs. MSCs are the most prolific producer
compared with other cell types known to produce exosomes
[101]. Extensive studies demonstrated that MVs especially
exosomes derived from MSCs could repair injured tissues.
For example, the MSCs were shown to secrete exosomes that
were cardioprotective and preserved cardiac performance
in AMI models [17, 62]. Moreover, human MSCs-derived
MVs were therapeutically effective in animal models of acute
lung injury induced by endotoxin [63]. MSCs exosomes
showed protective effects in acute kidney injury model as
well [64]. In addition, they could facilitate cutaneous wound
healing by promoting collagen synthesis and angiogenesis
[69]. After rats were subjected to traumatic brain injury,
MSCs exosomes could promote functional recovery and
neurovascular remodeling [70] and, in neurological diseases
such as stroke, MSCs exosomes also showed their therapeutic
potential, as depicted in Xin et al’s [71] study in which
systemic administration with MSCs exosomes promoted
functional recovery, neurite remodeling, neurogenesis, and
angiogenesis in animal models of stroke.

MSCs are able to secrete immunologically active exo-
somes [72] and thus exert immunomodulatory effects on the
differentiation, activation, and function of different lympho-
cyte subsets [73], suggesting that MSCs-derived exosomes
can be considered as a way of treating inflammation-related
diseases. Since MSCs are increasingly being used for the treat-
ment of acute and chronic graft versus host disease (GVHD)
via their immunomodulatory effects, the clinical value is
fantastic when we make the most of the therapeutic potential
of MSCs-derived exosomes if exosomes are involved in
the immunomodulatory mechanisms. Besides, the MSCs
exosomes may also be an ideal candidate for allogenetic cell-
based therapy, as a result of the low immunogenicity in MSCs
[74].

Another therapeutic potential of MSCs-derived M Vs that
is prospective is their roles in delivering drugs [75]. A recent
study demonstrated that MSCs could package and deliver
active drugs through their MVs [76], paving the way of
using MSCs to develop new drugs with increased efficacy and
homing capacity.

It is known that cell-cell communication plays an impor-
tant role in the action of MVs-derived from the MSCs,
especially the exosomes. The MVs can modify the target cells
through surface receptor interactions and transfer of inner
proteins, mRNAs, and miRNAs. Overexpression of GATA4
could potentiate the cardioprotection of MSCs, using cell-
free methods. Yu et al. [102] highlighted the importance of
MSCs overexpressing GATA-4-derived exosomes in cardiac
protection and the exosomes released antiapoptotic miRNAs
that regulated various cell survival signaling pathways. When
the MSCs were subjected to an ischemic condition, the
exosomes were enriched with miR-22 and could transfer
this miRNA to cardiomyocytes, eventually improving cardiac
function after myocardial infarction [103]. Besides, in animal
models of stroke, it was the miR-133b transferred to astrocytes
and neurons mediated by the MSCs exosomes that benefited
neurite remodeling and functional recovery [104]. Other

exosomes like these derived from the gastric cancer tissue-
derived MSCs delivered miR-221 to HGC-27 cells, promoting
gastric cancer proliferation and migration [105]. Currently,
methods are available to characterize the components of MV's
derived from the MSCs. Eirin et al. [106] characterized the
RNA cargo of MVs derived from the porcine adipose-tissue
MSCs and indicated that MVs were selectively enriched with
different kinds of RNAs. These studies suggested that MV's
conveyed gene regulatory information to modulate angiogen-
esis, adipogenesis, and other cell pathways in recipient cells,
which altogether provide the theoretical basis of altering the
content of MSCs exosomes.

Moreover, exosomes act as an important mediator of cell-
to-cell communication also in the tumor microenvironment.
Exosomes derived from the cancer cells could affect the
differentiation of MSCs in which MSCs were more likely to
change into carcinoma-associated fibroblasts [70, 107, 108].
For instance, it was shown that exosomes derived from
human bone MSCs could promote tumor growth in vivo
[65]. Additionally, human MSCs supported breast cancer
cell proliferation and promoted migration via the exosomes
transporting tumor regulatory microRNAs, proteins, and
metabolites and might affect the signaling pathway [66, 67],
similar to the roles of exosomes derived from bone marrow
MSCs towards the multiple myeloma progression [68].

Other studies paid attention to the antitumor effect
of MSCs exosomes. Specifically, Lee et al. [77] demon-
strated that MSC-derived exosomes could inhibit tumor
growth and suppress angiogenesis by downregulating vas-
cular endothelial growth factor (VEGF) mediated by the
exosome-delivered miR-16. By modifying the content of
exosomes such as overexpressing miR-146, Katakowski et
al. [78] indicated that exosomes significantly inhibited the
growth of brain tumor. It was once reported that bone MSCs
possessed potential antitumor activity but the action was
insufficient and weak [109]; Ma et al. [79] generated the new
method of combining bone MSCs with the tumor-derived
exosomes which was later confirmed to enhance MSCs’ anti-
tumor activity. This exploration provides a promising method
regarding antitumor activity that needs further examination.

5.2. Neural Stem Cells and Neural Progenitor Cells. Neural
stem cells (NSCs) are undifferentiated cells with the potential
to self-renew and give rise to all the main cell types of
central nervous system including the neurons, astrocytes, and
oligodendrocytes while neural progenitor cells (NPCs) have
less differentiation potential and limited renewal capacity
(110, 111]. Owing to their characteristics, NSCs/NPCs are
selected as tools to study the mechanism of disease conditions
regarding the central nervous system. For instance, abnormal
differentiation of NPCs contributed to the pathophysiology
of fragile X syndrome [112]. Coordinated signals contributed
to the origin or amplification of neuropathological devel-
opment of NSCs, but the regulatory mechanism remained
elusive. Feliciano et al. [81] pointed out that embryonic
CSF nanovesicles especially exosomes contained proteins and
microRNAs that host key determinants in the insulin-like
growth factor pathway which regulated NSC proliferation



(80, 82]. Lee et al. [113] demonstrated that MSCs promoted
neural cells’ differentiation by delivering exogenous microR-
NAs to human NPCs, providing a theoretical basis of the
potential by efficient delivery of microRNAs into the brain.
On the other hand, the NSCs were able to secrete large
amounts of exosomes [114]. One study showed that exosomes
facilitated the process in which the virus enters the cells
[83] and this process could be hampered by antibody target-
ing molecules expressed on the exosomes [84]. These data
implied an alternative way regarding the virus/exosome path,
which might help develop therapeutics to reduce the viral
infection. In order to characterize the exosomes in human
NSCs, Kang et al. [85] adopted the method of flow field-
flow fractionation and nanoflow liquid chromatography-
tandem mass spectrometry, identifying 103 proteins in the
exosomes, among which the diameter larger than 50 nm was
morphologically distinct from those smaller than 50 nm and
the protein contents of each type were different. Importantly,
the results showed that the exosomes contained polymyosi-
tis/scleroderma autoantigen 2 (PM/Scl2) which was specific
to systemic sclerosis (scleroderma), indicating that exosomes
might participate in triggering autoimmunity. We speculate
that the exosomes derived from the NPCs might be applied
to numerous neurological diseases in the near future.

5.3. EPCs. Endothelial progenitor cells (EPCs) are stem
cells with the capacity to differentiate into endothelial cells
[115], which forms the inner lining of a blood vessel. The
EPCs exosomes could steer angiogenesis in which exosomes
derived from EPCs bind to a4 and f31 integrins expressed
on the MV surface, promoting endothelial cell survival,
proliferation, and organization both in vitro and in vivo [86].
Furthermore, this process was closely related to mRNAs
transfer because MVs pretreatment with RNase abrogated
the angiogenic activity. Cantaluppi et al. [87] found that the
exosomes released from the EPCs protected human islets by
enhancing their vascularization and it was the microRNAs
shuttled by the exosomes that contributed to their angiogenic
effects. In addition, the data indicated that exosomes released
from EPCs protected acute kidney injury in rat models
of ischemia-reperfusion injury via transferring miRNAs.
Specifically, exosomes derived from the EPCs contained
abundant miR-126 and miR-296 which promoted the angio-
genesis and antiapoptosis [116]. Later research confirmed
the angiogenesis of exosomes derived from EPCs in murine
model of hindlimb ischemia [88]. All abovementioned stud-
ies indicated that the contents of exosomes determined the
action and it was reconfirmed, in other disease models like
hypoxia/reoxygenation induced human brain microvascular
endothelial cell injury, that the exosomes yielded two distinct
effects via two different kinds of carried RNAs associated with
ROS production and PI3K/eNOS/NO pathway contained
in the exosomes [89]. Additionally, exosomes derived from
EPCs exerted protective effects on cardiomyocytes against
angiotensin II- (Ang II-) induced hypertrophy and apoptosis
[90]. Therefore, exosomes derived from EPCs can be a
promising therapeutic agent.
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5.4. HSCs and HSPCs. HSCs are stem cells with the func-
tion of producing all lineages of blood cells and own the
capacity of self-renewal [117] whereas abnormal differentia-
tion may lead to chronic myeloid leukemia (CML). HSCs-
secreted exosomes contain the stem cell marker prominin-
1 (CD133) which played important roles in maintaining
stem cell properties and hosting key determinants in the
endocytic-exocytic pathway [91]. CD133+ cells purified from
hematopoietic tissues are another potential source of stem
cells; MV derived from these cells were proved to express
mRNAs of several antiapoptotic and proangiopoietic factors
which promoted angiogenesis, providing a theoretical basis
for application of purified CDI133+ cells in regenerative
medicine [92]. Salvucci et al. [93] indicated that exosomes
from G-CSF (granulocyte colony-stimulating factor) mobi-
lized bone marrows contained abundant miR-126 and G-
CSE promoting the accumulation of exosomes in the bone
marrow. Moreover, miR-126 delivered by exosomes reduced
the expression of vascular cell adhesion molecule-1 (VCAMI)
which was crucial to the retention of hematopoietic progen-
itor cells (HSPCs) in the bone marrow. Then, the reduced
level of VCAMI led to the mobilization of hematopoietic
stem/progenitor cells (HSCs/HSPCs) from the bone marrow
to the peripheral blood. In addition, CML-derived exosomes
promoted the proliferation and survival of tumor cells via an
autocrine action in antiapoptotic pathways and this process
was mediated by selectively expressed miRNAs as well [94,
118]. When referring to therapeutic effect, Ratajczak et al.
[92] found that HSC/HSPCs-secreted exosomes expressed
mRNAs of several antiapoptotic and proangiopoietic factors
like the VEGE, insulin growth factor-1, basic fibroblast growth
factor, and interleukin-8. These mRNAs exert antiapoptotic
property, increase the survival of endothelial cells, and stim-
ulate their proliferation and tube formation. Since the CML
could secrete exosomes, leukemia cell-derived exosomes-
based vaccines might be a promising strategy for enhancing
survival in patients suffering from chemotherapy and HSCs
transplantation [94]. Accordingly, we postulate that improve-
ments will be seen in terms of therapeutic effects toward the
blood diseases such as the CML in the near future.

5.5. CPCs and Other Stem Cell Types. Cardiac progenitor
cells (CPCs) are another attractive candidate for treatment of
myocardial diseases. The process of CPCs-mediated cardio-
protection can be attributed to both cardiovascular lineage
differentiation and paracrine effects [119-121]. The exosomes
are the key components of the paracrine factors in both
human [122] and mouse CPCs [95] and exert cardiac pro-
tection involving microRNAs both in vitro and in vivo. Gray
et al. [96] demonstrated that CPCs secreted proregenerative
exosomes in response to hypoxia, and 11 miRNAs were upreg-
ulated compared to normal exosomes. Moreover, exosomes
derived from the hypoxic CPCs improved cardiac function
and reduced fibrosis. Ong et al. [97] showed that CPCs-
overexpressing hypoxia-inducible factor-1 (HIF-1) improved
the survival of transplanted CPCs and these results were
attributed to the high levels of miR-126 and miR-120 con-
tained in the exosomes that activated prosurvival kinases
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and induced a glycolytic switch in recipient CPCs. These
data indicated that transferring of microRNAs from host
cells to transplanted cells might represent a promising way
to improve the survival of transplanted cells. Vrijsen et al.
[15] demonstrated that CPCs released exosomes into their
environment, stimulating migration of endothelial cells in an
in vitro scratch wound assay, and the mechanism was related
to extracellular matrix metalloproteinase inducer mediated
activation.

Other stem cells-derived exosomes such as those derived
from human liver stem cells (HLSCs) contributed to self-
renewal and expansion of stem cells [57]; besides, exo-
somes derived from HLSCs activated a proliferative program
in remnant hepatocytes after hepatectomy by horizontal
transferring of specific mRNAs, eventually accelerating liver
regeneration in vivo [123]. In addition, human CD34(+)
stem cells secreted exosomes that displayed an independent
angiogenic activity both in vitro and in vivo [124]. All these
results demonstrate that exosomes from stem cells might
represent a significant component of the paracrine effect of
progenitor cell transplantation for therapeutic angiogenesis.

6. Conclusion

In summary, exosomes can be released by various kinds
of stem cells and are able to modify the function of the
receptor cells and tissues. Compared with stem cells, which
may cause abnormal differentiation and tumor formation, the
exosomes mediated therapy harbors a more promising future.
Some diseases including idiopathic pulmonary fibrosis are
currently incurable, but MVs especially the exosomes have
shown therapeutic potentials [125]. However, there are still
challenges to overcome in studies of exosomes. The most
common method in isolation of exosomes is still ultracen-
trifugation which is time-consuming and requires a large
amount of cells and biological fluid. Although commercial
exosome extraction reagents are now available and yield high
numbers of exosomes, the products still need purification
as they contain non-EV contaminants such as lipoproteins
[126]. There are other open areas such as the process where
the exosomes choose respective cargo to transport, the way
the cells take up the exosomes, and how many types of
exosomes warrant further investigations. When referring
to the exosomes released by the stem cells, the definite
mechanisms of the action and specific therapeutic potential
of each subtype still need further efforts.
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